MMMPlotSuite#

class pymc_marketing.mmm.plot.MMMPlotSuite(idata)[source]#

Media Mix Model Plot Suite.

Provides methods for visualizing the posterior predictive distribution, contributions over time, and saturation curves for a Media Mix Model.

Methods

MMMPlotSuite.__init__(idata)

MMMPlotSuite.allocated_contribution_by_channel_over_time(samples)

Plot channel contributions over time from budget allocation optimization.

MMMPlotSuite.budget_allocation(*args, **kwargs)

Create bar chart comparing allocated spend and channel contributions.

MMMPlotSuite.budget_allocation_roas(samples)

Plot ROI (Return on Ad Spend) distributions for budget allocation scenarios.

MMMPlotSuite.contributions_over_time(var[, ...])

Plot time-series contributions for specified variables.

MMMPlotSuite.marginal_curve([data, ...])

Plot marginal effects showing absolute rate of change.

MMMPlotSuite.posterior_predictive([var, ...])

Plot posterior predictive distributions over time.

MMMPlotSuite.saturation_curves(curve[, ...])

Overlay saturation scatter plots with posterior predictive curves and HDI bands.

MMMPlotSuite.saturation_scatterplot([...])

Plot saturation scatter plot showing channel spend vs contributions.

MMMPlotSuite.sensitivity_analysis([data, ...])

Plot sensitivity analysis results showing response to input changes.

MMMPlotSuite.uplift_curve([data, hdi_prob, ...])

Plot uplift curves showing percentage change relative to baseline.